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Summary.  25 

Human activities are causing a global proliferation of cyanobacterial harmful algal 26 

blooms (CHABs), yet we have limited understanding of how these events affect 27 

freshwater bacterial communities. Using weekly data from western Lake Erie in 2014, we 28 

investigated how the cyanobacterial community varied over space and time, and whether 29 

the bloom affected non-cyanobacterial (nc-bacterial) diversity and composition. 30 

Cyanobacterial community composition fluctuated dynamically during the bloom, but 31 

was dominated by Microcystis and Synechococcus OTUs. The bloom’s progression 32 

revealed potential impacts to nc-bacterial diversity. Nc-bacterial evenness displayed 33 

linear, unimodal, or no response to algal pigment levels, depending on the taxonomic 34 

group. In addition, the bloom coincided with a large shift in nc-bacterial community 35 

composition. These shifts could be partitioned into components predicted by pH, 36 

chlorophyll a, temperature, and water mass movements. Actinobacteria OTUs showed 37 

particularly strong correlations to bloom dynamics. AcI-C OTUs became more abundant, 38 

while acI-A and acI-B OTUs declined during the bloom, providing evidence of niche 39 

partitioning at the sub-clade level. Thus, our observations in western Lake Erie support a 40 

link between CHABs and disturbances to bacterial community diversity and composition. 41 

Additionally, the short recovery of many taxa after the bloom indicates that bacterial 42 

communities may exhibit resilience to CHABs. 43 

 44 

 45 

 46 
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Originality-Significance Statement (not to appear in published manuscript).  48 

CHABs are a global threat to freshwater resources. Case in point was western 49 

Lake Erie’s 2014 CHAB that resulted in a drinking water shutdown in Toledo, Ohio, 50 

impacting 500,000 residents. Using weekly time-resolved molecular data, we describe the 51 

community ecology of Cyanobacterial taxa during this bloom, and we demonstrate how 52 

the bloom corresponded to shifts in bacterial diversity and composition. This work 53 

contributes to our understanding of how CHABs affect microbial communities, and it 54 

also contributes to a broader literature on disturbance and resilience of microbial 55 

communities.  56 

 57 

Introduction. 58 

 Cyanobacterial harmful algal blooms (CHABs) are a major threat to freshwater 59 

ecosystems globally and are primarily driven by human activities (Paerl and Huisman, 60 

2009; O’Neil et al., 2012; Michalak et al., 2013; Visser et al., 2016). CHABs impact 61 

ecosystems and human health by diminishing habitat for plants and animals, disrupting 62 

food web dynamics, creating hypoxic zones, and producing toxins (Carmichael et al., 63 

2001; Conroy et al., 2005; Hernández et al., 2009; Miller et al., 2010; Backer et al., 64 

2013). Despite a large body of CHAB research (Paerl and Otten, 2013; Steffen et al., 65 

2014; Davis and Gobler, 2016), relatively few studies have examined this phenomenon 66 

from a microbial ecology perspective that includes the community ecology of dominant 67 

cyanobacterial species as well as associations between cyanobacterial populations and 68 

other bacterial populations, which we will refer to as “nc-bacterial”.  69 
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CHAB cyanobacterial diversity can vary both spatially and temporally within a 70 

lake. For example, a year-long study from Yanga Lake (Australia) found a succession of 71 

cyanobacterial consortia through time, which was determined by seasonal biotic and 72 

abiotic fluxes (Woodhouse et al., 2015). In another example, a study from western Lake 73 

Erie (USA) found that Microcystis dominated in low P:N locations, while Anabaena and 74 

Planktothrix dominated in high P:N locations, because Microcystis was better able to 75 

scavenge phosphorus (Harke, Davis, et al., 2016). While prior studies have investigated 76 

some of the spatiotemporal trends of CHAB communities, we lack insight into how these 77 

communities vary on highly resolved time scales. Increased temporal resolution of 78 

CHAB community datasets may elucidate additional ecological associations between 79 

CHAB species that are key to understanding bloom ecology. 80 

Another important aspect of CHAB ecology is the extent to which these events 81 

impact nc-bacterial communities. We currently have poor understanding of if and how 82 

CHABs influence nc-bacterial richness and evenness (alpha diversity). Field studies from 83 

Lake Taihu (China) found no effect on bacterial alpha diversity (Tang et al., 2010; 84 

Wilhelm et al., 2011), while a study from Yanga Lake found that diversity increased with 85 

cyanobacterial bioviolume (Woodhouse et al., 2015). These conflicting results could 86 

possibly be explained by differential responses between bacterial groups. In a study using 87 

pond mesocosms, the richness of bacterial groups were shown to have strikingly different 88 

responses to experimentally manipulated primary productivity measured by chl a 89 

(Horner-Devine et al., 2003). Specifically, Alphaproteobacteria exhibited a negative 90 

unimodal relationship, Bacteroidetes exhibited a positive unimodal relationship, and 91 

Betaproteobacteria exhibited no relationship to chl a concentrations. Therefore, analysis 92 
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within taxonomic groups may help clarify the influence of CHABs on nc-bacterial alpha 93 

diversity.     94 

Similarly, CHABs are known to influence the composition of bacterial 95 

communities, but again, prior studies have reported conflicting results. A study from 96 

Lake Taihu found that bacteria attached to organic aggregates were different between two 97 

sites with differing chl a concentrations (Tang et al., 2010), but they also reported strong 98 

influences of co-varying factors such as temperature, oxygen, turbidity, and inorganic 99 

nutrients. Meanwhile, a study from Yanga Lake reported that bacterial community 100 

composition was influenced by pH, temperature, oxygen, and conductivity during a 101 

CHAB (Woodhouse et al., 2015). Therefore, the relative impacts of CHABs versus 102 

abiotic factors on nc-bacterial community composition are still unclear. 103 

To address these outstanding questions in CHAB microbial ecology, we 104 

investigated spatiotemporal dynamics of cyanobacterial populations, as well as changes 105 

to nc-bacterial alpha diversity and composition during the 2014 western Lake Erie 106 

CHAB. Lake Erie is the twelfth largest freshwater lake on Earth by surface area (Ohio 107 

Department of Natural Resources). It also provides essential ecosystem services by 108 

supporting a $1 billion USD fishing economy and supplying drinking water to over 11 109 

million people (Ohio Department of Natural Resources; Bingham et al., 2015). The 110 

CHAB in 2014 is of particular relevance, because it led to the drinking water crisis in 111 

Toledo, Ohio (Tanber, 2014). Insights into freshwater bacterial community ecology 112 

during CHAB events can point us towards possible interactions between cyanobacterial 113 

species that govern CHAB development and termination, and it can also inform 114 
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predictions of nc-bacterially-mediated ecosystem processes during these high impact 115 

disturbances. 116 

 117 

Results and Discussion. 118 

Bloom diversity, toxicity, and ecology 119 

A CHAB occurred in western Lake Erie between late July and late October of 120 

2014, characterized by elevated algal pigments (chl a and phycocyanin) and elevated 121 

particulate microcystin cyanotoxins (Figure 1b). We observed the bloom at three sites: 122 

the two nearshore sites, situated near the Maumee River, had higher median chl a 123 

concentrations than the offshore site (Figure 1a; Nearshore1 median: 18.5, Nearshore 2: 124 

13.72, Offshore median: 5.86). However, the range of pigment values at each site was 125 

large, so on certain dates e.g., first August time point (Aug. 4) and first and second 126 

September time points (Sept. 2, Sept. 8), the offshore site had similarly high levels as 127 

nearshore sites. In later analyses, we leverage these temporal differences in bloom 128 

intensity between nearshore and offshore sites to model variation in nc-bacterial 129 

composition associated with the bloom.   130 

Chl a and phycocyanin concentrations measured at the same site and date were 131 

highly correlated (p < 0.001, Spearman’s rho = 0.793). Correlations between time-series 132 

can result in spurious results (Johansen, 2007), but visual inspection indicated that the 133 

two variables were qualitatively correlated (Figure 1b). Since chl a is produced by most 134 

phytoplankton, but phycocyanin is only produced by Cyanobacteria, this analysis 135 

suggests that Cyanobacteria dominated the bloom dynamics. However, these data do not 136 

preclude the presence of eukaryotic phytoplankton species. In fact, our universal 16S 137 
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primers picked up numerous chloroplast reads, suggesting that eukaryotic species were 138 

present. Eukaryotic algae were not the focus of this study, so they were removed from the 139 

dataset.  140 

Particulate microcystin toxin was correlated with phycocyanin concentrations (p < 141 

0.001, Spearman’s rho = 0.836), but this relationship differed qualitatively between early 142 

and late bloom periods (Figure 1b). From mid-July to late August, elevated phycocyanin 143 

corresponded to high levels of particulate microcystin. Then from early September to 144 

October, elevated phycocyanin corresponded to lower toxin concentrations. Despite this 145 

shift in toxicity, there was a single dominant Microcystis OTU present in the community 146 

(Figure 2b). These data can be explained by the fact that there are numerous Microcystis 147 

strains that have more than 97% similarity in their full-length 16S rRNA gene, yet differ 148 

with respect to toxigenic potential and other ecological traits (Harke, Steffen, et al., 149 

2016).  150 

The cyanobacterial community was a diverse community of 11 non-rare OTUs 151 

(mean relative abundance > 0.05 %) assigned to Synechococcus, Microcystis, unclassified 152 

genera, Pseudanabaena, and Anabaena (in order of mean relative abundance) (Figure 2a, 153 

2b). Prior studies of CHABs on Lake Erie have primarily used microscopy to identify 154 

cyanobacterial species, and have reported that Microcystis was the heavily dominant 155 

cyanobacterium by biomass (Bridgeman et al., 2013; Michalak et al., 2013; Steffen et al., 156 

2014; Harke, Davis, et al., 2016). In contrast, our molecular data indicates that the 2014 157 

CHAB consisted of a more diverse cyanobacterial community that varied highly in 158 

composition over space and time. Synechococcus initiated the bloom at all three sites, and 159 

remained an abundant genus (by gene copy abundance) throughout the entirety of the 160 
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bloom. However, once Microcystis rose to abundance (3-4 weeks after Synechococcus), it 161 

dominated at the nearshore stations, while Synechococcus continued to dominate at the 162 

offshore station (Figure 2a).   163 

Only a few studies have discussed the abundance and importance of 164 

Synechococcus in Lake Erie’s CHABs (Ouellette et al., 2006; Gobler et al., 2008; Davis 165 

et al., 2012). This discrepancy could be related to either a predefined focus on 166 

Microcystis (e.g., using Microcystis specific primers), or a bias against picobacteria 167 

during sampling and morphological identification (e.g., colony-only sampling or a focus 168 

on the higher biomass per cell of colonial and filamentous Cyanobacteria). However, 169 

Synechococcus species likely co-occur with Microcystis in several systems, because a 170 

molecular-based study on Lake Taihu found that Synechococcus was abundant during 171 

Microcystis blooms (Ye et al., 2011). We observed both positive and negative 172 

correlations between Microcystis and Synechococcus OTUs in our study, though only one 173 

correlation between Microcystis and Synechococcus OTU 177 was significant (Table S1). 174 

Still, the persistent dominance of Synechococcus at the offshore station, where 175 

Microcystis abundance was generally lower, suggests that there may be a competitive or 176 

antagonistic interaction between these taxa. In fact, microcystin has been shown to inhibit 177 

the growth of some Synechococcus species (Hu et al., 2004). Future experimental studies 178 

might address how ecological interactions with Microcystis vary among different 179 

Synechococcus taxa.  180 

Pseudanabaena was the third most abundant genus, and like Microcystis, we only 181 

detected one abundant OTU (Figure 2b). Pseudanabaena co-occurred with Microcystis 182 

throughout much of the bloom, and the relative abundances of the two were highly 183 
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correlated (Table S1). Previous studies have shown that Pseudanabaena can be epiphytic 184 

on Microcystis colonies (Agha et al., 2016), therefore it is not surprising that these two 185 

genera would be correlated.  Furthermore, some Pseudanabaena strains have the genetic 186 

potential to produce cyanotoxins (Rangel et al., 2014), thus co-occurrence of 187 

Pseudanabaena and Microcystis may have repercussions for CHAB toxicity.  188 

Finally, observed dynamics of Anabaena and Microcystis support prior 189 

hypotheses addressing the competitive advantages of either genus under different nutrient 190 

regimes. Anabaena and Microcystis were not significantly anti-correlated (Table S1), but 191 

their opposing relationship was qualitatively apparent. For example, Anabaena was 192 

mostly absent from the Erie basin in the first stage of the bloom when phosphorus 193 

concentrations were low (Figure 2a, Figure S1). However, in late summer, when 194 

phosphorus levels increased and dissolved inorganic nitrogen concentrations decreased, 195 

Anabaena reached its peak level relative to Microcystis, particularly at the offshore site. 196 

These patterns are consistent with previous findings that Microcystis upregulates P-197 

scavenging genes and outcompetes Anabaena in P-limited environments (Gobler et al., 198 

2016; Harke, Davis, et al., 2016). 199 

One major caveat to the observations described above, as well as correlations 200 

made between taxa in the rest of this paper, is that these associations are biased in several 201 

ways by extraction protocol, primers, and the compositional nature of sequence data 202 

(Aitchison, 1982; Brooks et al., 2015). The universal primer set we used is known to be 203 

biased against SAR11, an Alphaproteobacteria common in marine environments, which 204 

has a sister lineage (LD12) that is ubiquitous in freshwater systems (Apprill et al., 2015). 205 

Furthermore, a correlation does not imply causality or even interaction. Still, these 206 
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observations can be quite informative when considered in the context of other 207 

observational and laboratory data.  208 

In summary, the cyanobacterial community in western Lake Erie’s 2014 CHAB 209 

was diverse and highly dynamic at the OTU level. The community was spatially 210 

heterogeneous, such that Synechococcus and Anabaena were more abundant offshore and 211 

Microcystis dominated near to shore. In addition, weekly temporal sampling revealed 212 

putative associations between cyanobacterial taxa, which could form the basis for more 213 

specific experimental studies examining pairwise ecological interactions.  214 

 215 

Seasonal and bloom-associated patterns in nc-bacterial alpha diversity 216 

Nc-bacterial richness and evenness exhibited differing temporal dynamics during 217 

the bloom cycle. With the exception of a few highly variable samples in October, 218 

observed nc-bacterial richness increased throughout the season (Figure 3A). In contrast, 219 

nc-bacterial evenness, measured by Simpson’s E, decreased until October (Figure 3E). It 220 

should be noted that rarefaction curves of OTU richness rarely reach saturation in diverse 221 

microbial environments, so richness estimates are highly dependent on sequencing depth. 222 

Therefore, we reported our estimates as observed richness (out of 15,631 sequences) 223 

rather than true richness. Still, our richness estimates show consistent trends with other 224 

studies that have observed increasing bacterial diversity from the spring to early fall in 225 

freshwater systems (Shade et al., 2007; Kara et al., 2012) and in the surface waters of 226 

marine systems (Cram et al., 2015).  227 

We did not observe a relationship between algal pigments and nc-bacterial 228 

richness (Figure 3B-D, Figure S2); however, we did find relationships between algal 229 
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pigments and the evenness of certain taxonomic groups (Figure 3F-H, Figure S2). 230 

Alphaproteobacteria evenness exhibited a unimodal response to log chl a, while 231 

Bacteroidetes evenness exhibited a linear response. The evenness of Betaproteobacteria 232 

was also slightly positively correlated with log chl a, though the association was not 233 

strong enough to be certain. However, the Inverse Simpson Index, which combines both 234 

richness and evenness, showed a much stronger response for linking log chl a to 235 

Betaproteobacteria (p < 0.001, R2 = 0.328). Therefore, this analysis is quite sensitive to 236 

the measure of alpha diversity used.  237 

In general, our data suggest that the bloom influences bacterial evenness more 238 

than bacterial richness. We hypothesize that increases in the evenness of dominant 239 

bacterial groups during the CHAB could be related to an increase in habitat complexity 240 

(colony-attached communities) or substrate complexity (carbon compounds from a 241 

diverse algal community), which would allow rare or dormant taxa to become relatively 242 

more abundant. While bloom specialists might be expected to dominate during this 243 

period, rapid weekly shifts in algal abundance (assumed from changes in pigments) and 244 

cyanobacterial composition could inhibit this, thereby promoting a more even 245 

community.  246 

In addition to chl a, we investigated the relationship of nc-bacterial richness and 247 

evenness with other measurements of the bloom. Lake pH can increase to very high 248 

levels during cyanobacterial blooms due to heightened primary productivity (López-249 

Archilla et al., 2004), because photosynthesis fixes carbon and displaces the equilibrium 250 

of carbon dioxide/bicarbonate/carbonate that would otherwise buffer a freshwater system. 251 

Compared to chl a, pH showed very similar and slightly stronger trends with respect to 252 
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evenness of Alphaproteobacteria and Betaproteobacteria (Figure S3). Chl a is often used 253 

as a proxy for primary productivity (Downing and Leibold, 2002; Horner-Devine et al., 254 

2003; Smith, 2007), but light, nutrients, and grazing rates can decouple the two by 255 

affecting per cell concentrations of chlorophyll or by reducing the standing stock of 256 

phytoplankton (Behrenfeld et al., 2005). Lake pH can be affected by geochemical 257 

conditions e.g., salt concentrations and presence of mineral carbonates, but there is no 258 

evidence for these conditions changing rapidly in western Lake Erie during the summer 259 

season. Therefore, pH might be a better proxy for primary productivity than chl a in this 260 

system, and would consequently correspond more strongly to bacterial diversity if such a 261 

relationship exists. Phycocyanin showed similar trends to nc-bacterial evenness (Figure 262 

S3), but the relationships were weaker, which suggests that nc-bacterial evenness is more 263 

affected by the total algal community than solely Cyanobacteria. 264 

Our data, supporting a link between the bloom and evenness of certain bacterial 265 

taxa, are consistent with experimental evidence that primary productivity affects alpha 266 

diversity of bacterial groups in different ways (Horner-Devine et al., 2003). However, the 267 

actual relationships we observed were quite distinct for each taxonomic group. 268 

Specifically, Alphaproteobacteria exhibited a U-shaped response to chl a in a pond 269 

mesocosm study (Horner-Devine et al., 2003), but our study shows the inverse hump-270 

shape. The mesocosm study found a hump-shaped response for Betaproteobacteria, but 271 

we found a positive linear trend. Discrepancies between these studies could be due to 272 

differences in community composition, differences in the range of chl a levels over which 273 

the communities were sampled, or other environmental factors that differ between a field 274 

and lab environment. Our results also differ from other CHABs field studies that have 275 
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found no effect of the bloom on bacterial alpha diversity (Eiler and Bertilsson, 2004; 276 

Woodhouse et al., 2015), though these studies only examined total bacterial richness. In 277 

lieu of our findings, future studies should examine both bacterial richness and evenness, 278 

and should explore diversity patterns within major taxonomic groups.  279 

This study provides some initial data differentiating between how annual cycles 280 

and bloom-associated trends affect the richness and evenness of freshwater nc-bacterial 281 

groups. Future studies that expand our observations across multiple years and cover the 282 

full annual range of seasonal variation will further resolve the intertwined effects of 283 

seasonality and CHABs growth dynamics on bacterial alpha diversity. 284 

 285 

Influence of CHABs and abiotic seasonal factors on nc-bacterial community composition 286 

The nc-bacterial community exhibited large shifts in composition during the 2014 287 

bloom cycle. The Bray-Curtis dissimilarities between the first June samples and peak 288 

bloom dates in August or September were 0.784, 0.812, and 0.642 for nearshore1, 289 

nearshore2, and offshore respectively. We expected that several biotic and abiotic factors 290 

contributed to these fluctuations, so rather than examining several factors independently, 291 

we used principal coordinates to identify the major axes of variation within the 292 

community. We then determined which variables corresponded to change across each 293 

axis over time with linear time-series models. In considering each principal coordinate, 294 

we examined whether sample scores were similar between nearshore and offshore sites. 295 

Abiotic seasonal dynamics should influence all three stations similarly, while the CHAB, 296 

if it has an effect, should influence the offshore site differentially than the nearshore sites 297 

on dates with large discrepancies in bloom intensity. We considered three principal 298 
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coordinates, because the third coordinate was situated at an obvious inflection point of 299 

the scree plot for relative variance explained by each axis (Figure S4).  300 

The first principal coordinate (PC1) of Bray-Curtis sample dissimilarities 301 

explained 34.8% of variation in nc-bacterial community composition across all samples. 302 

PC1 scores exhibited a hump-shaped response over time, which was highly consistent for 303 

the two nearshore sites, but showed differences between nearshore and offshore sites in 304 

mid August and mid to late September (Figure 4A). These differences corresponded to 305 

dates when algal pigments were considerably lower at the offshore station than nearshore 306 

stations (Figure 1B), suggesting that the bloom could be an influencing factor. We 307 

attempted to model PC1 scores solely with environmental data, but we achieved much 308 

better results when time was included as an additional covariate. The best model included 309 

time and pH, though the model with time and chl a had a similar R2 value (Table 1). For 310 

the model including pH, residuals were normal and did not exhibit autocorrelation 311 

(Figure S5), indicating that model assumptions were met. Model cross-validation 312 

returned a low mean squared error, indicating that the model was highly predictive.  313 

We posit that PC1 reflects changes in composition associated with the bloom and 314 

other seasonal factors. pH and chl a were the two strongest environmental predictors of 315 

PC1, and they can both serve as measures of bloom intensity. pH increases during blooms 316 

because algal photosynthesis removes carbon dioxide from the water and increases 317 

hydroxide ion concentration. In our sampling season, pH reached exceedingly high levels 318 

for a lake (>9, Figure S2), which is indicative of very high primary productivity in an 319 

otherwise well-buffered system (López-Archilla et al., 2004). Our model also suggests 320 

that seasonal variation is important, because the model fit improved considerably when 321 
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time was added as a covariate. Due to the limited interval of our study, it is difficult to 322 

interpret the meaning of the time variable. We think it’s likely that there is a sinusoidal 323 

seasonal trend, but it appears as a linear trend during this four-month period.  324 

There are multiple mechanisms by which an algal bloom can affect bacterial 325 

community composition. A shift from allochthonous to autochthonous dissolved organic 326 

carbon was observed during this CHAB (Cory et al., 2016), which may have influenced 327 

the relative abundance of different taxa. Several other studies have documented that 328 

bacterial communities respond to shifts in substrates available within the dissolved 329 

organic carbon pool during both freshwater and marine blooms (Lau et al., 2007; Teeling 330 

et al., 2012; Yang et al., 2015). Alternatively, pH is known to be a major influence on 331 

bacterial community composition in soil (Lauber et al., 2009) and freshwater systems 332 

(Lindstrom et al., 2005; Llirós et al., 2014). Therefore, the bloom may have actually 333 

influenced the composition of nc-bacterial communities by changing the lake’s pH. pH 334 

was found to be the most important factor structuring bacterial communities across 15 335 

North European lakes spanning the range of 5.5 to 8.7 (Lindstrom et al., 2005), and in 336 

Tibetan lake sediments spanning the range of 6.88 to 10.37 (Xiong et al., 2012). The pH 337 

range in our study spanned from 7.9 to 9.3, which is smaller than other studies, but may 338 

have covered critical thresholds. Importantly, the correlation of pH with PC1 suggests 339 

that changes to community composition were not driven solely by the presence of 340 

Cyanobacteria or harmful cyanobacterial species, but rather by the cumulative properties 341 

of the bloom, which would include eukaryotic or non-harmful species. If this is true, 342 

CHABs may not be particularly distinct disturbances to bacterial communities from other 343 

phytoplankton blooms that reach the same magnitude of primary productivity.  344 
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The second principal coordinate represented 11.0 % of the variation in nc-345 

bacterial community composition, which was less than one-third of the variation 346 

explained by PC1. Unlike PC1, sample scores on PC2 were highly similar between 347 

nearshore and offshore sites on all dates (Figure 4C). Therefore, it is unlikely that bloom-348 

related factors were strongly correlated to this axis of variation. Temperature was the best 349 

predictor of PC2 scores (Table 1). We did not include time as a covariate, because time 350 

was highly correlated with temperature, and it created multicollinearity issues in our 351 

model. The temperature model residuals were normal, and did not exhibit significant 352 

autocorrelation (Figure S5). However, cross-validation returned a somewhat high mean 353 

squared error, indicating that model estimates could still be biased by temporal trends for 354 

which we didn’t account. Nevertheless, our model supports that temperature was an 355 

important factor in the structuring of nc-bacterial community composition. Congruently, 356 

freshwater bacterial communities are known to undergo seasonal shifts, and temperature 357 

has been found to be the single largest determinant of these patterns (Kent et al., 2004; 358 

Crump and Hobbie, 2005; Shade et al., 2007).  359 

Finally, PC3 explained only 6.72% of variation in nc-bacterial community 360 

composition. PC3 scores differed strongly between nearshore and offshore sites, but 361 

unlike PC1, these differences did not correspond to dates with large discrepancies in 362 

bloom intensity (Figure 4E). Conductivity was the best predictor of PC3 scores (Table 1), 363 

and most model assumptions regarding normal independent residuals were met, though 364 

there was some autocorrelation in the residuals from nearshore1 (Figure S5). The Detroit 365 

and Maumee rivers are known to have distinct conductivity signatures (Millie et al.). 366 

Therefore, we interpret variation on this third axis as driven primarily by differences in 367 
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water mass, which result from differential inputs of the Maumee and Detroit rivers to 368 

nearshore and offshore sites.   369 

Thus, using three principal coordinates, which together explain more than half of 370 

the variation in nc-bacterial community composition, we identified pH, chl a, 371 

temperature, and conductivity as key environmental gradients. PC1, which explained 372 

more than three times the variance of the second and third coordinates, showed evident 373 

differentiation between nearshore and offshore sites on dates with large differences in pH 374 

and chl a. Therefore, we argue that the bloom was a considerable disturbance to nc-375 

bacterial community composition.  376 

 377 

Bloom effects on abundant nc-bacterial groups and resilience of bacterial communities to 378 

CHAB disturbances  379 

Principal coordinates analysis revealed that bloom-associated measures 380 

corresponded to changes in nc-bacterial community composition, but it did not reveal 381 

which taxa were most affected. Therefore, we investigated which nc-bacterial taxa 382 

significantly correlated with shifts in pH and chl a. Using Spearman’s rank correlation 383 

tests, we found 34 abundant OTUs (mean relative abundance > 0.1%) that were 384 

positively correlated with pH and 27 that were negatively correlated (Table S2). There 385 

was considerable overlap (83%) with the OTUs associated with chl a. A majority of the 386 

most significant positive and negative correlated taxa to both bloom measures were 387 

Actinobacteria acI OTUs. Actinobacteria acI was also the most abundant clade in the nc-388 

bacterial community by at least three-fold. Interestingly, acI-A and acI-B OTUs 389 

decreased during the CHAB, while acI-C OTUs increased (Figure 5). In addition, 390 
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changes in the relative abundance of these OTUs differed between nearshore and offshore 391 

stations, particularly on dates in mid August when there was a large discrepancy in algal 392 

pigments and pH. These data suggest there was niche partitioning among acI OTUs in 393 

response to the CHAB, which was conserved at the sub-clade level. Numerous other 394 

studies have documented niche and seasonal partitioning patterns in acI sub-clades 395 

(Allgaier and Grossart, 2006; Newton et al., 2011; Eiler et al., 2012), including 396 

partitioning by the ratio of allochthonous to autochthonous carbon (Jones et al., 2009) as 397 

well as by pH (Newton et al., 2007). However, these prior studies focused on partitioning 398 

between acI-A, acI-B, acII, and acIV. We found no published research on the ecology of 399 

acI-C, so further work will be necessary to determine the mechanism by which this sub-400 

clade benefits from CHABs, and whether this mechanism is distinct from non-CHAB 401 

algal blooms.  402 

Other abundant clades such as bacI, betI, bacV, and betIV did not show the same 403 

conserved niche partitioning to the bloom as acI (Figure S7). Within each clade, there 404 

were individual OTUs that appeared to respond positively or negatively during the 405 

bloom, but there were also abundant OTUs whose relative abundance did not strongly 406 

reflect bloom dynamics.  407 

Dynamics at the OTU level, particularly among the acI, demonstrate that nc-408 

bacterial community composition was highly affected by the western Lake Erie CHAB. 409 

Thus, bacterial communities exhibit a high degree of sensitivity to CHAB disturbances 410 

(Shade et al., 2012). Nevertheless, by the end of October, acI OTUs recovered towards 411 

pre-bloom relative abundance. Similarly, PC1 scores returned nearly to pre-bloom levels 412 

and Bray-Curtis dissimilarities between the first and last time points at each site were 413 
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substantially smaller than the peak levels observed during the bloom (nearshore1: 0.460, 414 

nearshore2: 0.453, offshore: 0.364). This quick recovery toward baseline levels indicates 415 

community resilience (Shade et al. 2012). Freshwater bacterial communities have 416 

previously been shown to be highly resilient to physical and chemical disturbances 417 

(Shade et al., 2011), and our study indicates that the same may be true for biotic 418 

disturbances.  419 

 420 

Conclusion. 421 

Western Lake Erie’s bacterial community exhibited changes in diversity and 422 

composition during the bloom season of 2014. In particular, the evenness of 423 

Alphaproteobacteria and Betaproteobacteria showed differential responses to algal 424 

pigment levels, suggesting that the bloom affected niche diversity for these phylogenetic 425 

groups. Changes in community composition could be represented in three coordinates, 426 

with the first coordinate associated most strongly with bloom measures, the second 427 

coordinate associated with temperature, and the third coordinate associated with physical 428 

water mass movements. These results support work by others demonstrating that bacterial 429 

communities are impacted by CHABs, and identifies the acI clade as a particularly 430 

affected group. The time resolution of this study also demonstrates that most taxa 431 

affected by the CHAB exhibit resilience by recovering to pre-bloom levels shortly after 432 

the termination of this biological disturbance. A better understanding of the specific 433 

relationships and processes between bacterial diversity and the occurrence and toxicity of 434 

CHABs will be useful given the projected acceleration of CHABs in future years.  435 

 436 
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Experimental Procedures. 437 

Sample collection 438 

         Samples were collected approximately weekly between mid-June and late 439 

October, 2014 from three stations (nearshore1, nearshore2, offshore) in the western basin 440 

of Lake Erie that correspond to NOAA Great Lakes Environmental Research Laboratory 441 

long-term monitoring sites WE12, WE2, WE4 respectively (NOAA-GLERL). 442 

Nearshore1 is closest to the water intake for the city of Toledo, nearshore2 is close to the 443 

mouth of the Maumee River, and the offshore site is on the northeastern edge of the 444 

bloom perimeter (Figure 1a).   445 

Physicochemical measurements and microbial samples were obtained from an 446 

integrated 20 L water sample taken between the surface and 1 m above the bottom. The 447 

sample was homogenized by shaking. All station depths ranged between 4-12 m, and the 448 

shallowness of the western basin prevents vertical stratification. Temperature, pH, and 449 

conductivity were measured on deck, and algal pigment, cyanotoxin, and nutrient 450 

measurements were analyzed at NOAA-GLERL using standard techniques (U.S. EPA, 451 

1979). H2O2 measurements were analyzed according to Cory et al. (2016). For microbial 452 

samples, a 2 L subsample was taken from the 20 L sample and rehomogenized. 150 mL 453 

was syringe filtered onto a 0.22 µm Millipore Express Plus filter (EMD Millipore, 454 

Billerica, MA), though on peak bloom dates the filter clogged before the full volume was 455 

filtered. All filter samples were placed into cryovials with 1 ml of RNAlater (Ambion, 456 

Foster City, CA) and frozen at -80 ºC until extraction.  457 

 458 

DNA Extraction and Sequencing 459 
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         Filters were thawed at room temperature and, while folded with biomass facing 460 

inwards, rinsed with sterile PBS to remove RNAlater preservative. Filters were incubated 461 

in 100 µL Qiagen ATL tissue lysis buffer, 300 µL Qiagen AL lysis buffer, and 30 µL 462 

proteinase K for 1 hour at 56 ºC on a rotisserie  (Qiagen, Hilden, Germany). Cells were 463 

lysed by vortexing for 10 minutes. Lysates were homogenized with the Qiashredder 464 

column, and DNA was purified from the filtrate using the Qiagen DNeasy Blood and 465 

Tissue kit according to standard protocol. Extracted DNA was amplified using primer set 466 

515f/806r, which targets the V4 hypervariable regions of the 16S rRNA gene (Bergmann 467 

et al., 2011). The DNA was then sequenced using Illumina MiSeq v2 chemistry 2x250 468 

(500 cycles) at the University of Michigan Medical School. RTA v1.17.28 and MCS 469 

v2.2.0 software were used to generate data. Fastq files were submitted to the NCBI 470 

sequence read archive under BioProject PRJNA318386, SRA accession number 471 

SRP07334. 472 

 473 

Sequence Filtering and Pre-processing 474 

Mothur V 1.34.3 was used to perform quality control and cluster sequences into 475 

OTUs (Schloss et al., 2009). Sequence processing was performed according to the 476 

Mothur standard operating procedure (http://www.mothur.org/wiki/MiSeq_SOP accessed 477 

on March 13, 2015). Taxonomy was assigned to sequences using the Wang method 478 

(Wang et al., 2007) with an 80% bootstrap cutoff using the Freshwater Microbial Field 479 

Guide (FWMFG) (Newton et al., 2011). This database resolves clade and sub-clade level 480 

taxonomy for common freshwater taxa and allows our data to be compared to other 481 

freshwater studies. However, the FWMFG lacks certain taxonomic groups such as 482 
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Planctomycetes, so we used the Silva database V119 (Quast et al., 2013) for the 483 

remaining unassigned reads. OTUs were clustered using the average neighbor algorithm 484 

with a 97% similarity threshold. Mothur output files were imported into R V 3.2.2 (R 485 

Core Team, 2015) using the phyloseq package V 1.10 (McMurdie and Holmes, 2013) for 486 

all downstream analyses of diversity and community composition. All scripts, mother 487 

output files, and sample data are publically available at 488 

https://github.com/DenefLab/chab-ecology. 489 

 490 

Spatial and temporal bloom dynamics 491 

 Spearman’s correlation tests were used to determine if there were monotonic 492 

relationships between algal pigments, toxin, and pH. To explore positive and negative 493 

associations between Cyanobacteria OTUs, we performed pairwise Spearman’s 494 

correlation tests between all OTUs with mean relative abundance > 0.0005 using the 495 

corr.test command in the psych package with fdr correction (Revelle, 2015).  496 

 497 

Bacterial alpha diversity  498 

Alpha diversity was estimated using observed OTU richness and Simpson’s 499 

Evenness (Simpson’s E), which is the Inverse Simpson’s Index divided by richness. 500 

Alpha diversity estimates were calculated for each sample by sampling sequences with 501 

replacement to 15,631 reads (the smallest library size) and averaging the measures over 502 

100 trials using the estimate_richness command in phyloseq. Based on scatterplot 503 

visualization, we ran either linear or polynomial models to predict the richness and 504 

evenness of different bacterial groups from log chl a concentrations. Chl a measurements 505 
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were log scaled in order to meet assumptions of normal residual terms. P-values for each 506 

model were adjusted with a Benjamini-Hochberg false discovery rate (FDR) correction.  507 

 508 

Bacterial community composition analyses 509 

Differences in nc-bacterial community composition were calculated using the 510 

Bray-Curtis dissimilarity. Before calculating Bray-Curtis, data was transformed by 511 

scaling the raw proportions of OTUs to the read count of the smallest library (15,631 512 

reads in this study), and rounding to the nearest integer count. This method is equivalent 513 

to the estimated value of averaging counts from repeated rarifying trials, but is more 514 

reproducible and does not contribute additional noise to the dataset (McMurdie and 515 

Holmes, 2014). The relative abundance of an nc-bacterial OTU was measured with 516 

respect to the nc-bacteria rather than the total bacterial community to reduce bias from 517 

changes in the cyanobacterial community. However, this method does not completely 518 

eliminate compositional effects (Aitchison, 1982). 519 

To investigate differences in nc-bacterial community composition, we 520 

implemented a principal coordinates analysis. The goal of this analysis was to visualize 521 

similarity between samples in reduced dimensions, and to identify the major axes of 522 

variation in community composition through time. These axes are likely, though not 523 

certain, to correspond with environmental gradients. PCoA and related eigen-analyses 524 

have been implemented with time series data (Freeman et al., 2014; Maurice et al., 525 

2015), and the interpretation is similar to other datasets except the sample scores on each 526 

axis are ordered by time. The percentage of variance explained by each axis was 527 

determined from the axis eigenvalue divided by the cumulative sum of all eigenvalues. 528 
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As the Bray-Curtis dissimilarity is non-euclidean, some principal coordinates (PCs) had 529 

negative eigenvalues, so we applied a Lingoes correction (Lingoes, 1971). To determine 530 

the number of principal coordinates to examine, we looked for the inflection point in the 531 

scree plot, which displays the relative variance in Bray-Curtis dissimilarity explained by 532 

each coordinate.  533 

To investigate gradients that could be associated with changes in bacterial 534 

community composition, we constructed linear models using environmental variables 535 

(e.g. nutrients, temperature, pigments) to predict Bray-Curtis principal coordinate scores. 536 

Time series often contain long-term trends in addition to short-term fluctuations. 537 

Therefore, we experimented with including time as an additional covariate in each model. 538 

We assumed that differences between nearshore and offshore sites were due to 539 

environmental conditions, rather than inherent differences between these sites, so our 540 

models only included fixed effects. Model residuals were examined to determine whether 541 

they met assumptions of normality and independence (i.e. no autocorrelation). To assess 542 

model accuracy, we performed “leave-one-timepoint-out” cross validation of the best 543 

models for each axis and reported the mean squared error. This protocol is similar to 544 

LOOCV, except rather than removing one sample at a time during the model training 545 

stage, we removed all three samples from a given time point. This provided a less biased 546 

estimate of model error, because measurements from the same dates were frequently 547 

similar across sites, and would have reduced the error on the test set.  548 

In addition to the simple linear models, we attempted to model each set of 549 

principal coordinates scores with multiple linear regression. We included all 550 

environmental variables as potential covariates and used best subset selection to identify 551 
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the model that minimized the Bayesian Information Criterion. The BIC penalizes more 552 

complex models in order to optimize the total amount of variance explained while 553 

reducing variables that contribute little explanatory power. Because we had relatively few 554 

data points (53) and many potential covariates (13), we also implemented a bootstrap 555 

analysis, in which we sampled with replacement and refit the models 100 times in order 556 

to determine the stability of a particular predictor. However, even with the bootstrapping, 557 

the results of each model varied depending on the seed value. We found that there was 558 

really only one stable predictor (present in >90% of all bootstrapped models), which is 559 

why we proceeded with simple time series models that included a single environmental 560 

covariate. 561 

The principal coordinates approach that we took is an example of an indirect 562 

gradient analysis – gradients are unknown a priori and are estimated by linking 563 

environmental variables to the canonical axes of a sample similarity measure. We also 564 

tried an implementation of direct gradient analysis using redundancy analysis (RDA). 565 

RDA is a constrained version of principal components analysis in which the canonical 566 

axes are linear combinations of the response variables and also relate to the response 567 

variable via multiple linear regression. A time series version of RDA can be implemented 568 

using asymmetric eigenvector maps (AEM) (Baho et al., 2015). Our RDA results 569 

identified the same gradients as our PCoA approach among others. Ultimately, we found 570 

the PCoA approach to be more appropriate, because the variance explained by the 571 

constrained axes was not much more than the unconstrained axes, indicating that the 572 

model was missing some important environmental gradients. In particular, we found it 573 
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more accurate and intuitive to observe the behavior of nearshore vs. offshore sites over 574 

time in unconstrained ordination space than constrained ordination space.  575 

Finally, we performed the same principal coordinate analysis and time series 576 

linear model approach for the cyanobacterial community. However, the principal 577 

coordinates exhibited very noisy trends over time and were not strongly correlated to 578 

specific environmental variables. We also had concerns that the compositional nature of 579 

the OTU counts would lead to stronger biases in these analyses, because the 580 

cyanobacterial community constituted a relatively small proportion of all bacterial reads. 581 

Therefore, we report more descriptive statistics of the cyanobacterial community over 582 

time rather than implementing a model-based approach.  583 

 584 

OTU-level analysis  585 

To find potential positive or negative associations between nc-bacteria and the 586 

bloom, we performed Spearman’s rank correlation tests with pH and chl a. We examined 587 

all nc-bacteria OTUs with mean relative abundance larger than 0.1% (107 taxa total) 588 

using the corr.test command from the psych package (Revelle, 2015) with an FDR 589 

correction.  590 
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Figure Legends: 604 

Figure 1: A) Map of sampling locations in western Lake Erie. B) Photosynthetic 605 

pigment, toxin, and relative abundance of Cyanobacteria reads across sites and sampling 606 

dates. M denotes a missing sample.   607 

 608 

Figure 2: Cyanobacterial spatial and temporal dynamics during the western Lake Erie 609 

CHAB. A) Cyanobacterial genus composition across stations and timepoints. Relative 610 

abundance is measured with respect to the total bacterial community. B) Cyanobacterial 611 

OTU temporal dynamics. OTUs with mean relative abundance > 0.0001 are depicted. 612 

Relative abundance is measured with respect to the total bacterial community.  613 

 614 

Figure 3: Nc-bacterial alpha diversity trends. A) Nc-bacterial observed richness trends 615 

over time. B-D) Observed richness of Alphaproteobacteria, Bacteroidetes, and 616 

Betaproteobacteria with respect to log chl a concentrations. E) Nc-bacterial evenness 617 

measured by Simpson’s E over time. F-H) Evenness of Alphaproteobacteria, 618 

Bacteroidetes, and Betaproteobacteria with respect to chl a concentrations. Reported p-619 
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values underwent FDR correction for multiple hypotheses. For plots of other bacterial 620 

groups and correlation to pH and phycocyanin see figures S2-S3. 621 

 622 

Figure 4:  Principal coordinates analyses of nc-bacterial Bray-Curtis dissimilarity. Three 623 

principal coordinates were selected based on the output of a scree plot. 624 

A-B) PC 1 scores with respect to time and pH. C-D) PC 2 scores with respect to time and 625 

temperature. E-F) PC3 scores with respect to time and water specific conductivity. 626 

Figure 5: Spatial and temporal dynamics of abundant Actinobacteria acI OTUs.  627 

 628 

Table1: Regression models to predict scores on Bray-Curtis principal coordinates over 629 

time. The top model(s) for each PC are reported. Only one environmental covariate was 630 

considered in each model, and models were compared with and without time as an 631 

additional covariate. P-values underwent FDR correction. Cross validation was 632 

performed by leaving out all samples from the same timepoint as the test set. 633 

Supplementary plots showing model residuals are in Figure S5-S6. 634 

 635 

Variable PC1 PC1 PC2 PC3 

model ~ pH + time ~logChla + time ~ Temperature ~SpCond  

p-value *** *** *** *** 

R2 0.678 0.658 0.822 0.451 

Cross-
validation 

MSE 

0.01 0.0233 0.0522 0.0494 

 636 

 637 
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Table 1: Regression models to predict scores on Bray-Curtis principal coordinates 

over time. The top model(s) for each PC are reported. Only one environmental covariate 

was considered in each model, and models were compared with and without time as an 

additional covariate. P-values underwent FDR correction. Cross validation was 

performed by leaving out all samples from the same timepoint as the test set. 

Supplementary plots showing model residuals are in Figure S5. MSE = mean squared 

error. 

 

Variable PC1 PC1 PC2 PC3 

model ~ pH + time ~logChla + time ~ Temperature ~SpCond  

p-value <0.001 <0.001 <0.001 <0.001 

R
2
 0.678 0.658 0.822 0.451 

Cross-

validation 

MSE 

0.01 0.0233 0.0522 0.0494 
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Sample sites and bloom dynamics. (A) Map of sampling locations in western Lake Erie. (B) Photosynthetic 
pigment, toxin, and relative abundance of Cyanobacteria reads across sites and sampling dates. M denotes a 

missing sample.    
Figure 1  
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Cyanobacterial spatial and temporal dynamics during the western Lake Erie CHAB. (A) Cyanobacterial genus 

composition across stations and timepoints. Relative abundance is measured with respect to the total 

bacterial community. (B) Cyanobacterial OTU temporal dynamics. OTUs with mean relative abundance > 

0.0001 are depicted. Relative abundance is measured with respect to the total bacterial community.  

Figure 2  
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Nc-bacterial alpha diversity trends. (A) Nc-bacterial observed richness trends over time. (B-D) Observed 
richness of Alphaproteobacteria, Bacteroidetes, and Betaproteobacteria with respect to log chl a 
concentrations. (E) Nc-bacterial evenness measured by Simpson’s E over time. (F-H) Evenness of 

Alphaproteobacteria, Bacteroidetes, and Betaproteobacteria with respect to chl a concentrations. Reported 
p-values underwent FDR correction for multiple hypotheses. For plots of other bacterial groups and 

correlation to pH and phycocyanin see figures S2-S3.  
Figure 3  
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Principal coordinates analyses of nc-bacterial Bray-Curtis dissimilarity. Three principal coordinates were 

� �selected based on the output of a scree plot (Figure S4). (A-B) PC 1 scores with respect to time and pH. 
(C-D) PC 2 scores with respect to time and temperature. (E-F) PC3 scores with respect to time and water 

� �specific conductivity.   
Figure 4  
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Spatial and temporal dynamics of abundant Actinobacteria acI OTUs.  
Figure 5  
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